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SUMMARY 
The paper presents a Chebyshev-Fourier collocation method for solving the unsteady 3D Navier-Stokes equations 
in a cylindrical domain. The numerical scheme uses primitive variables and the incompressibility constraint is 
satisfied by applying iteratively a correction to the pressure field. The method, due to Cahodt and Chabard ( h t .  j .  
numer methodrfluih, 8, 869-895 (1988)) and originally developed in the framework of finite elements, is 
checked with respect to the present highader approach. Several tests are carried out in Cartesian geometries, 
successively 2D and 3D. then a comparison is perfoxmed in a cylindrical domain with two different sets of radial 
collocation nodes: Gauss-Lobatto nodes and Gauss-Radau points. Although quite acceptable results are obtained 
with the latter chain, a general decrease in efficiency is noticeable in the collocation method. This is interpreted as 
the consequence of two factors: the collocation fornulation is not symmetric and the Fourier analysis, used BS 
heuristic guide by Cahouet and Chabard, loses its efficiency in a non-equidistant grid, especially in a cylindrical 
geometry. 

We present an application to the study of thennosolutal convection induced by unidirectional solidification of a 
binary alloy. The latter grows h m  a Pb-30?hTl liquid phase in a cylindrical crucible comsponding to the vertical 
Bridgman upward configuration. We study the influence of the flow patterns on the crystal composition. 

KEY WORDS: genaolizsd stokes problan; chebyshcv spectrpl method; thermosolutal comredioll; directid solidilicatiq 
vertical Bridgmm problem 

1. INTRODUCTION 
The solidification process is of great interest in material processing. Crystal growth from the molten 
phase induces concentration and thermal modifications that in tum are responsible for fiee convective 
patterns. It is currtntly accepted that the coupling of the fluid flow with the solidification process is 
important, because a noticeable influence of the convective patterns on the crystal morphology has 
been observed.'-3 Consequently, this coupling has been the subject of several studies, both 
experimental and t h e ~ r e t i c a l . ~  

The present work is concerned with the numerical study of flow pattern in the liquid phase. More 
precisely, we numerically compute! the natural convection accompanying the growth of a binary alloy 
in a cylindrical aucible. The mathematical model is composed of the Navier-Stokes equations in the 

CCC 0271-2091/96/050393-17 
@ 1996 by John Wiley & Sons, Ltd. 

Received February 1995 
Revised May 1995 



394 C. LE MAREC, R. GUERIN AND P. H A L D E " G  

Boussinesq approximation, including the conservation laws of heat and solute. This classical set of 
partial differential equations is completed with boundary conditions specific to directional 
solidification, namely non-zero velocity of the flow and mixed conditions on the solute concentration 
at the solid-liquid interfslce. 

The first approaches to this problem involved more classical numerical schemes such as finite 
differences or f i t e  elements.e11 Because natural convection is generated in small length scales (the 
convective boundary layers), high-accuracy methods have also been chosen. Therefore, in the field of 
free convection, spectral or pseudospectral  method^'^-'^ have already been used. The approach 
currently implemented is the vorticity-streamhction f~rmulation.'~-'~ In order to provide boundary 
conditions on the vorticity equations, an influence matrix technique is de~eloped. '~. '~ Influence 
matrices are also implemented" in the framework of primitive variables to furnish boundary 
conditions on the pressure field. This technique leads, especially in the 3D case, to matrices of huge 
size. Its application is limited to problems with rather few degrees of freedom. 

To overcome the latter limitation, other authors have p r o p o ~ e d ~ ' * ~ ~  an iterative solution of the 
generalized Stokes problem that appears when a semi-implicit treatment is applied to the velocity- 
pressure formulation. One of these proposals" is linked to a Cartesian geometry and cannot be used in 
our cylindrical approach. Consequently, we have chosen the Cahouet and Chabard22 algorithm which 
is of general use. The latter method is concerned with a specific preconditioning of the Uzawa operator 
that solves the pressure field. Cahodt and Chabardzz proposed their method in the framework of finite 
elements, which leads23 to a symmetrical formulation of the Uzawa operator. Moreover, these authors 
suggested that their preconditioning should be 'optimal' when an equidistant mesh is used. It is, 
however, well known that Chebyshev spectral methods suffer from the following two drawbacks: the 
formulation is not symmetric and the collocation points are not equally spaced. Therefore our purpose 
is to check the behaviour of the Cahoui3 and Chabard algorithm when their preconditioning is not 
supposed to be 'optimum' and the conjugate gradient method cannot be applied. As a result, a loss of 
efficiency will clearly be observed. Nevertheless, the algorithm remains quite practicable, as shown by 
the reported illustrations of flow patterns. 

Concerning the space discretization with the Chebyshev collocation method, we have chosen 
Gauss-Lobatto nodes16 in the axial direction, while equihstant collocation points are selected on the 
azim~th. '~  For the radial discretization we have compared two sets of collocation points: Gauss- 
Lobatto nodes (excluding the centre r = 0) and Gauss-Radau points. A semi-implicit treatment has 
been applied for time stepping. It includes the stability preservation techniq~e?~ the implementation of 
which is imperative in a cylindrical geometry. This leads to a separate set of elliptic Helmholtz 
equations and the pressure correction is obtained through a Poisson equation. Therefore we have used 
the technique25 of partial diagonalization in each direction in order to solve this sequence of elliptic 
problems appearing as the implicit parts of the time treatment. 

The last part of this paper is concerned with numerical experiments. The selected configuration is 
the v d c a l  Bridgman problem of directional solidification. We present results relative to three- 
dimensional flows in a cylinder induced by the growth of a P b T l  alloy. Particular attention will be 
devoted to studying the dependence of the compound flow patterns on the composition of the solid 
Phase. 

2. COLLOCATION METHOD IN CYLINDER 

2. I .  Mathematical model 

It is a fact that the shape of the solibliquid interface is a relatively important factor in crystal 
quality. Nevertheless, we have deliberately chosen to increase the accuracy of the flow computation 
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rather than to consider the feedback of the shape deformation on the flow. As a result, for the time 
being we have assumed a flat solid-liquid interface. We thmfore focus our attention on the convective 
coupling between the flow and the crystal growth in a nondeformable cylindrical domain, neglecting 
the coupling between the flow and the eventual deformation of the latter computational domain. 

The equations of motion reduced with the length scale D/Vo and the time scale D/ Vi (V, is the 
growth velocity and D is the coefficient of solute diffusion) are 

1 av 1 -- + - (V V)V = -Vp -I- AV 4- R,Te, + Rs Ce, sc at sc 

(2)  v - v  = 0,  

aT - -t- (V V)T = LeAT, at 
ac 
- + (V V)C = AC, 
at 

(3) 

(4) 

where RT and Rs are the thermal and solutal Rayleigh numbers respectively, Sc is the Schmidt number 
and Le is the Lewis number. A complett definition of these nondimensional parameters is furnished in 
Section 4. In the latter section we additionally discuss the boundary conditions adapted to solidification 
problems. 

2.2. Erne discrerizotion 

The time discretization makes use of the Adams-Bashforth second-order backward Euler scheme" 
described in the following section for the heat equation (3): 

This leads to the Helmholtz elliptic problem 

which can be written by setting 

in the compact form 

A similar Helmholtz equation for the concentration can be derived at time (n + 1)st. For the velocity 
we obtain the so-called generalised Stokes problem 
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where G""-' is related to the velocity fields at times ndt and (n - l)St, similar to equation (8). We 
stress the fact that the global time scheme is of second order. 

2.3. Collocation method 

We have selected a high-precision space discretization method: both axial and radial directions use 
Chebyshev collocation methods, while Fourier collocation is performed on the azimuth. From equation 
(9) we have to solve 

(a1 - A)u(r, 8. z) = f ( r ,  8.z). where (r ,  8, Z) E 10. R] x [0,2n[ x [O,E,]. (1 1) 

We simply map 10, R] x [ 0 , 2 ~ [  x [0, E,] onto 1- 1, 11 x [0, 2n[ x [-1, 11. The boundary conditions 
we have to face are the most general: Dirichlet, Neumann or mixed types (Robin). The scalar field u is 
a function of the variables r (radius of cylinder), 8 (azimuth) and z (vertical direction). In equation (1 1) 
a is a positive constant. In cylindrical co-ordinates the scalar Laplacian operator reads 

Au= -- r -  +--+-u. [::( :) z2 :2] 

Therefore, in contrast with the Cartesian case, equation (1 1) does not present a separate differential 
form relative to r and 8. Moreover, to overcome the singularity at r = 0 (axis of cylinder), we multiply 
equation (1 1) by 3: 

Now the lack of separation is between I and z. We shall explain later the reason for this preference. 
In the axial direction z we have considered the Chebyshev-Gauss-Lobatto collocation points 

defined by 

Let us recall that this collocation chain corresponds to the extrema of the Chebyshev polynomial of 
degree N. In the azimuthal direction we have chosen the set of equidistant collocation points defined by 

(M - 2)/2 being the number of Fourier modes required for the approximation on the azimuth. In the 
radial direction two chains of collocation points have been studied. On the one hand the Chebyshev- 
Gauss-Lobatto points have been considered: 

q i=cos  - , 0 < i < L - 1 .  (;) 
On the other hand the Chebyshev4auss-Radau points have also been implemented. 

qi = ms(&), 0 < i < L -  1. 
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The approximation of u is given by 

L - 1, (M - 2)/2 and N are the orders of the polynomial (ordinary or trigonometric) approximation by 
interpolation of u in the directions r, 8 and z respectively. 

At this point, to solve equation (1 l), we follow the procedure of complete diagonization of the 
Helmholtz operator as described in Reference 25. For this purpose we denote 

(16) 
a2 A =-- 

2 &2’  

Let us mention that this differential operator is equipped with boundary conditions of mixed m e .  
Consequently, it is an invertible discrete operator represented by a matrix of rank N - 1 when both 
unknowns at the extremities of the interval [-1, 11 are preliminary eliminated.*’ Furthermore, the 
diagonalization of the correspondmg matrix, also denoted A,, gives 

A, = H,AJ-I;’, (17) 

where H, and A, are the matrix formed by the eigenvectors and the dagonal matrix of the eigenvalues 
of A, respectively. Let us stress that the eigenvalues are real and denoted & k = 1,. . . JV - 1. Let us 
now consider the differential part of equation (13) that involves the coupled directions r and z. On the 
basis of the diagonalization of A, this operator simply reads 

The N - 1 partial operators (An)& require one bounda~~  condition at r = 1 to be invertible. Then they 
can be separately diagonalized in the following form involving matrices of rank L - 1 (after 
elimination of the unknown at r =  1): 

( A n ) k  = Hrk (19) 

Note that the coupling between r and z implies 2(N - 1) matrices of rank L - 1 for performing the 
change of basis. Let us emphasize that for both studied collocation chains the eigenvalues are real. If 
the multiplication by 2 in equation (13) were omitted, some of these eigenvalues would be complex. 
The use of real quantities explains our choice in equation (1 3). The last direction is concerned with the 
uncoupled variable 0 and the partial diagonalization is straightforward, because no boundary 
conditions are to be treated. Therefore set 

(20) 
az 

e -  a@ A ---. 

The diagonalization gives 
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IQuation 13 then becomes 

(22) 
I? is the diagonal matrix corresponding to the multiplication by 2. U contains the internal unknowns 
and is a vector of length (L - l)M(N- 1). S corresponds to a source vector of the same size, 
composed of the values of the right-hand side of equation (1 3) expressed at the internal collocation 
nodes. S also includes complementary terms due to the successive eliminations of the unknowns at the 
boundaries. Then, inverting equation (22), we easily obtain 

[H,(RZ)-'H&Z&.k + Ae)Hz'Hi'H;']U = S. 

U = [HflOH,k(Ak + Ae)-'H~'H~'R2H;']S. (23) 
This method leads to high computing efficiency on vectorial or parallel processors, because they 
generally incorporate matrix-vector multiplication subroutines. 

2.4. Special treatment for stability improvement 

Let us now consider the implicit part related to the vectorial field U(r, 0, z): 
(d - A)U(r, 8, Z) = F(r, 8, z), where (r, 8, Z) E ] - 1, 11 x [0 ,2n[  x [-1, 11, (24) 

with the vectors U = (u,(r, 8, z), u&, 8, z), u2(r, 8,~)) and F = V;(r, 8, z),fe(r, 0 .4 ,L( r ,  8,~)). 
The structure of the vectorial Laplace operator needs to be detailed. Therefore the three Helmholtz 

problems appear as 

Obviously, equation (27) has the same structure as the scalar Helmholtz equation (13). However, 
equations (25) and (26) contain a differential term of first order with respect to 8 that couples the two 
unknowns u, and ug. Neither term can be treated explicitly because of severe stability restrictions. 
Consequently, the system composed of equations (25) and (26) needs to be manipulated in order to 
obtain two separate problems. It is then recommendd4 to combine them by setting the new unknowns 

u+ = u, + iuo, 11- = U, - We, 

where u+ and u- are two complex functions of the d variables r, 8 and z. Thus the knowledge of u+ 
is sufficient to furnish the solution Re@+) = u, and Im(u+) = ue. Combining (25) + i x (26), we obtain 

Let us now consider the procedure of diagonalization as presented in the previous subsection. 
Although the Laplace operator herc appears differently, the first steps of the process are similar. Firstly 
we diagonalize partially with respect to the direction z. Then the modified version of equation (28) is 
multiplied by 2 and the partial diagonalization with respect to the direction r is also of the same type. 

Concerning the diagonalization with respect to 8, the differential operator contains an additional 
first-order term that also has to be diagonalized. The procedure is developed as follows. Set 

a 
ae' DO = - 
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The diagonalization is given by 

where Ae is a pure imaginary eigenvalue matrix16 and the entries of C are 
M M 

M 2 2 
, < R <  - - 1 .  C& =Lei&%, -- 

The differential operator $/& + 2 i a / a  present in equation (28) therefore possesses a corresponding 
discrete matrix that can be qresented in the diagonal form 

C-' (A; + 2iAo)C. (32) 
At this point note that although the entries of C and C- ' are complex, the diagonal part of equation 
(32) is composed of negative real numbers. Finally, equation (28) may be written as 

[H,(I?)-'C-'H,(A, - A: - 2iAg)H;'CH;']U+ = S, + ise. (33) 
Inverting equation (33) easily provides the complex unknown vector U+. The particular form of the 

eigenvectors in equation (31) allows us to carry out the separation of the real and imaginary parts in 
equation (33). Consequently, the computation furnishes directly u, and ug using optimal real matrix- 
vector facilities. 

3. SOLVER FOR GENERALIZED STOKES PROBLEM 

At this point we are able to solve the scalar and vectorial Helmholtz equations. Now we have to treat 
their additional coupling with the incompressibility constraint through the pressure field. This leads to 
the so-called generalized Stokes problem (GSP). 

3.1. The Cahouet and Chabard preconditioning 

Let us study the generalized Stokes problem with Dirichlet-type boundary conditions for velocities. 
Consider the problem on the velocity field U and the pressure p that is to be solved in the domain R: 

HU + V p  = F ,  
v -u  = 0,  (34) 

where H is the elliptic Helmholtz operator defined by HU = aU - AU, c is a positive constant related 
to the time step and F is a known function obtained by explicit time discretization. Note that H is the 
Helmholtz operator corresponding to the collocation method described in the previous section, 
equipped with Dirichlet boundary conditions. Consequently, if p is known, solving equation (34) 
yields the velocity divergence field 

V . U  = V*H-' (F - Vp). (35) 

As a result, the pressure field is the solution of the following problem involving A, the so-called Uzawa 
operator: 

Ap = V*H-' ( -Vp)  = S, (36) 

s = V.H-' ( -F) .  (37) 

where s is a source term @own at the time step n + 1) given by 

Solving equation (36) is the basic problem of incompressible (or low-Mach-number) flows. In the 
framework of infinitGorder methods (say the general class of spectral methods), numerical 
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experimentation has that the resolution of equation (36) can be reduced to the use of a 
Poisson solver provided that satisfying boundary conditions on the pressure field can be previously 
determined. This is the role of the influence matrix technique, which, however, presents severe 
limitations in the 3D case owing to the huge size of the matrix to be inverted. 

Among the remaining rigorous alternatives we have chosen an algorithm, suggested by Cahouet and 
Chabard2' that can be applied to a non-Cartesian geometry. Originally this algorithm was 
implemented in the framework of finite elements and it can be shown that in a variational formulation 
the Uzawa operator has a strongly elliptic ~haracter.~' However, this property is not achieved in the 
present collocation method. Consequently, the conjugate gradient method originally proposed by 
Cahouet and Chabard22 cannot be applied and our purpose is to check its global efficiency when 
minimum residual (MR) or steepest descent (SD) methods are implemented. 

Let us now give a description of the algorithm, the aim of which is to carry out a satisfactory 
preconditioning of system (36). It is a straightforward adaptation of the algorithm in Reference 22. 

Givenp', solve aUo - AUo = f - Vpo in R and Uo= go)  on r (r is the contour of R); compute 
ro = v - u O .  

Solve -Avo = ro in R and &po/an = 0 on r; compute wo = ro + avo. 
Then for rn 2 0, assuming that pm,  U", J" and wm are known, compute pm+l ,  Urn+', Pt' and 
W"+l as follows. 
Solve compute pm+' = 
p" - p m w " ,  u m + l  = u m  - p U m  and P+' =P - p m % ;  solve -A@" = %  in R and 

If P is small enough, take p =pm+l and U=U"+'; do rn = rn + 1 and go back to step 3. 

oUm - AUm = -VW" in R and Urn = 0 on r; set % = V * Urn, 

a@"/an = 0 on r; compute ~ " + l  = W" - p"(l +a@"). 

Two relaxation parameters pm have been tested. The steepest descent (SD) method gives 

(Jn? W") p m  = ~ 

(P, 4' 
while the minimum residual (MR) method yields 

3.2. Convergence properties of the iterative process 

As previously mentioned, the quality of the Cahouet and Chabard preconditioning depends on the 
nature of the discretization. In what follows, we compare our results obtained for different geometries 
and collocation points with those of Reference 22. 

Firstly we study the generalized Stokes problem in the 2D case [ - 1, I ]  x [ - 1, 11. We give in 
Table I the values of the convergence rate for several values of o in the range 1 - 1000. This calculation 
is performed with 45 x 45 Chebyshev collocation nodes for both the SD and MR methods. The rate of 
convergence, 5, is estimated in the La-norm. More precisely, we compute T as 

with n fixed at 20 in our study. 
A similar study of the convergence rate is performed for the problem in the cube 

[ - 1, 11 x [ - 1, 11 x [ - 1,1]. The computation is carried out with 25 x 25 x 25 Chebyshev 
collocation nodes; a, the Helmholtz constant, lies in the same range as before. 
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Table I. Comparison between conveqgence rates for different g e o d e s  versus u 

Method. u = l  u= 10 u=100 u= lo00 

40 1 

2D Cartesian case: 45 x 45 

SD 0.6 1 0.56 0.56 0.52 
MR 0.6 1 0.56 0.56 0.59 

3D Cartesian case: 25 x 25 x 25 

SD 
MR 

0.68 
0.68 

0.65 
0.66 

0.65 
0.66 

0.62 
0.63 

3D cylindrical case: 20 x 16 x 31 

SD(GL) 0.74 0.75 0.75 0.75 
SD(GR) 0.69 0.69 0.70 0.71 
m(GL) 0.74 0.74 0.75 0.77 
MR(GR) 0.69 0.69 0.70 0.7 1 

SD, steepst descent; MR, minimum midual, GL, Gwss-Lobano collocation points; GR, Gauss-Radau collocation points. 

Finally, the Stokes problem in the cylindrical domain 10, I]  x [0, 2x[ x [ - 1, I ]  is solved using 20 
resp. 3 1 Chebyshev collocation nodes in the d i a l  resp. vertical direction and 16 Fourier collocation 
nodes on the azimuth. Let us recall that in the radial direction we have implemented two versions with 
Gauss-Lobatto and Gauss-Radau points. Both series of results relate to the same numerical conditions 
as above. 

For the sake of comparison, Table I summarizes the convergence rates for all cases. As a general 
comment, both relaxation methods, SD and MR, yield more or less the same rates and the results are 
weakly dependent on the value of u, the Helmholtz constant: the efficiency of the preconditioning 
increases slightly with u. However, the dependency of the rate is mainly concerned with the geometxy. 
In the 2D Cartesian geometry we are quite fir fiom the rates of convergence reported in Refercnce 22. 
Our calculation involves 2025 pressure nodes, while 1666 arc used in the 6nite element computation of 
Reference 22. The rates of convqence we have obtained are in the range 0-52-0-61, while the finite 
element ones are between 0.20 and 0.46. 

In the 3D Cartesian geometry the loss of efficiency is also noticeable, although the ranges almost 
overlap. Our rates of convergence lie within the range 0.62468 and are obtained using 15,625 
pressure nodes. In the finite element approach the convergence rate is between 0.30 and 0.58, while the 
number of pressure nodes remains quite low, 4096. 

In the 3D cylindrical geometry the loss of efficiency is even worse. However, the Gauss-Radau 
chain presents better properties than the Gauss-Lobatto chain as indicated in Tables I and 11. For the 
former set of collocation nodes the convergence rate is close to 0.70 in comparison with 0.75 for the 
latter, these values being obtained with 9920 pressure nodes. 

From the results in Reference 22 it is clear that the proposed preconditioning yields a convergence 
behaviour independent of the number of pressure nodes. Several tests on co8fse and fine g d s  giving 
the same rate are reported. This is almost still the case in our study. Sensitivity tests show that the 
efficiency diminishes very slightly when the discntizati on increases. For instance, with u fixed at 
IOOO, we report in Table II a few comparative rates for different d i s c ~ o n s .  Because Table I1 shows 
a noticeable influence of the number of collocation nodes on the convergence ram, it appears that for a 
nonequidistant grid the Cahouet and Chabard preconditioning does depend weakly on the 
discretization. In fact, this is not a surprising result: the Cahoust and Chabard heuristic approach 
based on Fourier analysis does not apply to non-equidistant grids. 
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Table 11. Effect of degrees of W o r n  for Q fixed at lo00 

Chebyshev collocation CahouEt and Chabart 

2D Cartesian case 

20 x 20 45 x 45 65 x 65 1666 pressure nodes 
6502 velocity nodes 
3 168 elements 

T = 0.52 K = 0.52 T = 0.57 0-20 5 K _< 0.46 

3D Cartesian case 

20 x 20 x 20 

K = 0.62 

35 x 35 x 35 

K = 0.66 

Cylindrical case 
Chebyshev-Fourier collocation 

4096 pressure nodes 
29791 velocity nodes 
20250 elements 
0.30 5 K 5 0.57 

(GL) 20 x 16 x 31, ~=0.75 
(GR) 20 x 16 x 31, ~=0.71 

(GL) 25 x 24 x 31, ~=0.77 
(GR) 25 x 24 x 31, ~=0.71 

In conclusion, this preconditioning applied to a non-equidistant grid has lost its optimal character. 
However, even if more work is obviously needed for a cylindrical geometry, our present 
implementation of this method confirms its practicability. 

4. APPLICATION To DIRECTIONAL SOLIDIFICATION 

4 , l  Physical considemtions 

Our purpose is to study in the liquid phase the flow patterns induced by thermosolutal free 
convection during the directional solidification of a Pb-30%T1 alloy in a cylindrical crucible. The aim 
is to determine the influence of the convective patterns on the crystal composition at the solid-liquid 
interface. 

For a given pressure the binary alloy phase diagram furnishes solid-liquid equilibria defined by a 
relationship between temperature and solute composition in both phases. The interfacial ratio of solute 
concentration in the solid to that in the liquid, the so-called partition coefficient k, appears in the solute 
conservation condition at the interface and leads to boundary conditions of mixed (Robin) type as 
generally met in solidification processes. In Table I11 we give the typical values of the physicochemical 
properties characterizing the selected alloy, which actually is one of the most experimentally 
Note that Table 111 does not provide four important parameters that control the liquid phase flow. These 
quantities depend directly on Vo, the drawing velocity (or growth velocity), which is an extemal 
parameter imposed on the crucible. This allows us to define the solutal length (i.e. the typical length of 
scale of the concentration gradient) 

D 
is=&’ 

the reduced radius of the crucible, 
R B = - ,  
1, 
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the solutal Rayleigh number 

Table 111. Physicochemical parameters for 
-30% n alloy 

Value 

2 x I O - ~  cm2 s-' 
0.108 cm2 s-' 

1.15 x lo-* K-' 
2-43 x lo-' cm2 s-' 
0.155 J an-' K-'  s-' 
0.314 J cm-' K-' s-' 
1-1 
121.5 
0.0225 
5400 

- 5.4 10-4 , , t%-l 

the thermal Rayleigh number 

the Schmidt number 
11 sc = - 
D 

and the Lewis number 

(42) 

(43) 

where ac and a r m  the solutal and thermal expansion coefficients respectively, q is the kinematic 
viscosity, Du, is the coefficient of thermal dihivi ty ,  R is the radius of the cylinder and g is the 
gravitational acceleration. At this point let us recall our choice for getting the nondimensional set of 
equations given by (1)-(4) of Section 2. The velocity, length and tempera- are rtduced with Vo, Is 
and AT respectively, where AT is the temperature drop imposed on the liquid cylinder. The 
concentration is expressed in terms of the drop in thallium mass fraction reduced with AC= C ,  
(k  - l)/k, when AC is the drop in thallium mass fraction given by the diffusive solution:6 C, being 
the thallium mass fraction in the liquid phase far h m  the interface (ie. C ,  = 30%). We now specify 
the boundary conditions added to equations (1)-(4) of Section 2. 

1. For the velocity field we impose no-slip boundary conditions on the whole contour for u, resp. ue, 
the radial resp. azimuthal component. The axial component u, is set on the whole contour to 
- Vo, the opposite of the growth velocity. 

2. For the concentration field we impose a Dirichlct condition at the top of the cylindrical domain, a 
homogeneous Neumann condition on the lateral wall and the following solute conservation 
condition at the bottom of the cylinder: 
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3. For the temperature field we impose Dirichlet conditions T, at the bottom of the cylinder (T,  
corresponds to the h i o n  temperature) and T, + AT at the top. For the lateral wall we choose a 
homogeneous Neumann condition (hypothesis of adiabatic crucible). 

We start the time integration with different types of initial condition. We study the flow patterns 
obtained either by destabilization of the diffusive solution or by modification of a solution previously 
computed with a less stiff set of parameters. 

4.2 Results and discussion 

In order to illustrate the applicability of the method, we present for an intermediate value of the 
aspect ratio (B = 5 )  the hydrodynamic analysis of two different configurations of 3D flows and their 
influence on the composition in the solid phase. The selected illustrations are concerned with two 
important regimes of flow: the axisymmetric and non-axisymmetric patterns. The former is obtained 
for low solutal Rayleigh number: the presented example corresponds to Rs=40.  For the non- 
axisymmetric flow the illustration is for Rs = 60. 

The simplicity of the pattern for the first example leads to a rather easy flow analysis. Figure l(a) 
presents the level contours of the axial component of the velocity drawn in the horizontal plane z = 6.6 
and shows that the flow is axisymmetric. Figure l(b) shows a similar plot of the same field drawn in the 
vertical plane 8 = 0. This indicates that the flow penetrates the liquid to a typical height of about 20 
times the solutal length. For the reduced composition field, Figure 2(a) shows the isocOncentration 
lines drawn in the vertical plane 8 = 0. In this plot it is noticeable that most of the lines are confined 
close to the crystal in a domain of thickness unity, confirming that Is ,  the solutal length, is the basic 
length scale of the problem. A blow-up of this domain is shown in Figure 2(b), where it can be 

z = 6.6 

Figme 1. L m l  contours of axial component of velocity in (a) horizontal plane z = 6.6 and (b) vdca l  p h e  0 = 0 for B = 5, 
R, = 40 
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Figm 2. (a) Iso-cowmbarion lines in vertical plane 0 = 0 for j = 5,  Rs = 40. (b) Blow-up of (a) above solibliquid interface 

observed that the composition of the liquid phase is impoverished in thallium along the cylinder axis. 
According to Figure I@), the flow is ascending along the axis. 

This set of observations is consistent with the fact that the solid phase contains more thallium than 
the liquid, leading to a lighter fluid close to the interface. The analysis shows that the role of the 
convective flow is to feed with thallium the liquid composition at the interface (or, in an equivalent 
way, to cany far h m  the interface the excess of lead rejected h m  the solid phase). Consequently, the 
crystal does not grow in a uniform fluid composition: where the flow descends the crystal has to be in 
phase equilibrium with a liquid richer in thallium. Therefore its composition presents a radial 
dependence as illustrated in Figure 3, which shows the level contours of the crystal composition 
deduced from the liquid composition at the interface. We can see that at the centre the magnitude of the 
thallium drop is about 3.3%. This result is in agreement with experiments showing a radial dependence 
of the same amplitude.6 

To illustrate the non-axisymmetric flow, we set Rs = 60. The flow pattern we have obtained for this 
parameter presents a unique convective roll (leading to an azimuthal dependence corresponding to the 
first Fourier mode). This flow has a plane of symmetry near 8 = n / 2 .  Figure 4(a) presents the level 
contours of the axial component of this convective roll, drawn in the horizontal plane z=6.6.  It 
illustrates that in this horizontal plane the flow possesses the already mentioned symmetry. Figure 4@) 
shows the Same field plotted in the vertical plane 0 = n/2 ,  which contains the locus of the maximum of 
the vertical velocity. In this case the flow penetration involves the whole computational domain. This 
addresses the following issue: is the cylinder sufficiently high in our simulation? As a result, the height 

/ 

Figure 3. Level contous of reduced solute composition in horizontal plane z = 0 (interface) for j = 5,  Rs = 40 
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z = 6.6 
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Figure 4. Level contours of axial component of velocity in (a) horizontal planes z = 6.6 and @) vertical plane 0 = n/2  for 
j = 5.  R ,  = 60 

of the cylinder has a weak influence on the crystal composition as long as no boundary layer of solute 
concentration appears at the top of the cylinder. In Figure S(a) we verify that this is the case. This figure 
presents the iso-concentration lines drawn in the v d c a l  plane 8 = 4 2 .  This plot is, however, of weak 
physical significance because all lines are confined in a layer of thickness unity. A blow-up of this layer 
is shown in Figure 5@) ,  where it can be observed that as in the previous case the composition of the 
liquid phase is modified by the ascending or descending column. 

To study the crystal composition, we analyse the reduced thallium mass hction at the interface. 
Figure 6 shows the level contours of the latter quantity drawn in the plane of the interface (z = 0). The 
plots are in agreement with the observation of ascending and descending columns in Figures 4(a) and 
4@). As a matter of fact, the maximum of the thallium species is located close to the centre, while its 
minimum appears in a specific zone situated on the crystal boundary. This minimum is actually the 

4 . 1 0 1 4  

e=rr/2 

(a) (s) 

F i p  5. (a) -tratim lims in vertical plane 0 = x / 2  for B = 5, Rs = 60. (b) Blow-up of (a) above eoliMiquid mtufacc 
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Figure 6. Level wntoun reduced solute composition in horizontal plane z = 0 (interface) for B = 5, Rs = 60 

result of two cosperative effects. On the one hand this zone is affected by the proximity of the 
ascending column. On the other hand the points close to the crystal sides grow fiom a liquid phase 
weakly renewed because of the viscous boundaq layers. 

The latter effect was already present in the previous &symmetric case. A more precise plot of the 
thallium mass fraction along a diameter in the crystal is shown in Figure 7(a) for Rs = 40. Note that 
here the thallium mass fraction of the crystal is the non-reduced quantity. One observes that the 
renewal effect of the descending fountain is also damped in the vicinity of the cylinder wall. We 
additionally notice that the amplitude of the thallium fluctuation in the crystal is about 0.96%. The 
same plot for the non-axisymmetric case is presented in Figure 7@). The crystal composition seems to 

(a) 
30.2 

29.1 ............ 
19.6 ......... 

. . . ___A.  ........ . .  . .  . .  ..... ._ --. 

29.0 

- 5 4 - 3 - 2 - 1  0 1 1  3 4 5 
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be more uniform, especially around the centre, although the amplitude of the fluctuation is larger. We 
measure a 1.27% variation in the thallium composition in the crystal. 

5 .  CONCLUSIONS 

We have presented a high-accuracy numerical method to solve the thermosolutal convective flow 
induced by vertical Bridgman directional solidification. The space discretization is based on a 
Chebyshev-Fourier collocation method applied on the primitive variables. The incompressibility 
constraint has been enforced using an iterative resolution of the Uzawa operator giving the related 
pressure field. This iterative technique uses the preconditioning recommended by Cahouet and 
Chabard.” We have established that the efficiency of this technique applied to our highsrder method 
becomes lower than for the results obtained with finite elements. Two reasons have been put forward. 
On the one hand, collocation methods do not provide a symmetric Uzawa operator. Consequently, the 
procedure cannot take advantage of the conjugate gradient method. On the other hand the Fourier 
analysis had provided a fairly good heuristic guide to the previous preconditioning.u It seems clear 
that in a cylindrical geometry such an analysis could not retain its efficiency. Note that in the radial 
direction the Gauss-Radau collocation points provides slightly better results than the Gauss-Lobatto 
ones. Nevertheless, for the time being, this preconditioning allowed us to rigorously enforce the 
incompressibility condition. Although the convergence rate is quite feeble, we have found this method 
practicable. Concerning both illustrations presented above, the maximum of the divergence field when 
the steady solutions are reached is about lo-’, the number of iterations on the Uzawa operator being 
limited to six at each time step. 

In the application to directional solidification we have shown that the considerable expanded effort 
in computing the flows is not wasted, because we have numerically predicted relatively large 
fluctuations in the crystal composition. In both illustrations at moderate Rayleigh numbers that we have 
presented, a binary alloy grows from a Pb-30% T1 liquid phase. The resulting crystal is in fact a non- 
homogeneous alloy with 29.2%30.1% mass fraction of thallium for axisymmetric flow and 29.2% 
30.5% for non-axisymmetric flow. 
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